[백준][BOJ][C++][14888번] 연산자 끼워넣기
본문 바로가기

알고리즘 문제풀기/백준

[백준][BOJ][C++][14888번] 연산자 끼워넣기

반응형

문제

N개의 수로 이루어진 수열 A1, A2, ..., AN이 주어진다. 또, 수와 수 사이에 끼워넣을 수 있는 N-1개의 연산자가 주어진다. 연산자는 덧셈(+), 뺄셈(-), 곱셈(×), 나눗셈(÷)으로만 이루어져 있다.

우리는 수와 수 사이에 연산자를 하나씩 넣어서, 수식을 하나 만들 수 있다. 이때, 주어진 수의 순서를 바꾸면 안 된다.

예를 들어, 6개의 수로 이루어진 수열이 1, 2, 3, 4, 5, 6이고, 주어진 연산자가 덧셈(+) 2개, 뺄셈(-) 1개, 곱셈(×) 1개, 나눗셈(÷) 1개인 경우에는 총 60가지의 식을 만들 수 있다. 예를 들어, 아래와 같은 식을 만들 수 있다.

  • 1+2+3-4×5÷6
  • 1÷2+3+4-5×6
  • 1+2÷3×4-5+6
  • 1÷2×3-4+5+6

식의 계산은 연산자 우선 순위를 무시하고 앞에서부터 진행해야 한다. 또, 나눗셈은 정수 나눗셈으로 몫만 취한다. 음수를 양수로 나눌 때는 C++14의 기준을 따른다. 즉, 양수로 바꾼 뒤 몫을 취하고, 그 몫을 음수로 바꾼 것과 같다. 이에 따라서, 위의 식 4개의 결과를 계산해보면 아래와 같다.

  • 1+2+3-4×5÷6 = 1
  • 1÷2+3+4-5×6 = 12
  • 1+2÷3×4-5+6 = 5
  • 1÷2×3-4+5+6 = 7

N개의 수와 N-1개의 연산자가 주어졌을 때, 만들 수 있는 식의 결과가 최대인 것과 최소인 것을 구하는 프로그램을 작성하시오.

입력

첫째 줄에 수의 개수 N(2 ≤ N ≤ 11)가 주어진다. 둘째 줄에는 A1, A2, ..., AN이 주어진다. (1 ≤ Ai ≤ 100) 셋째 줄에는 합이 N-1인 4개의 정수가 주어지는데, 차례대로 덧셈(+)의 개수, 뺄셈(-)의 개수, 곱셈(×)의 개수, 나눗셈(÷)의 개수이다. 

출력

첫째 줄에 만들 수 있는 식의 결과의 최댓값을, 둘째 줄에는 최솟값을 출력한다. 연산자를 어떻게 끼워넣어도 항상 -10억보다 크거나 같고, 10억보다 작거나 같은 결과가 나오는 입력만 주어진다. 또한, 앞에서부터 계산했을 때, 중간에 계산되는 식의 결과도 항상 -10억보다 크거나 같고, 10억보다 작거나 같다.

코드

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include<iostream>
#include<vector>
#include<algorithm>
#include<math.h>
using namespace std;
const int MAX = 1000000000 + 1;
 
int N, temp_ans, f;
vector <int>ans;
vector<int>A;
vector<int>ma;
 
void check() {
    temp_ans = 0;
    sort(ma.begin(), ma.end());
    do {
        temp_ans = A[0];
        for (int i = 0; i < ma.size()+1; i++) {
                if (ma[i] == 1) {
                    temp_ans += A[i + 1];
                }
                if (ma[i] == 2) {
                    temp_ans -= A[i + 1];
                }
                if (ma[i] == 3) {
                    temp_ans *= A[i + 1];
                }
                if (ma[i] == 4) {
                    temp_ans /= A[i + 1];
                }
        }
        ans.push_back(temp_ans);
    
 
    } while (next_permutation(ma.begin(), ma.end()));
}//check
 
int main() {
    cin >> N;
    int ss;
    int num;
    for (int i = 0; i < N; i++) {
        cin >> num;
        A.push_back(num);
 
    }
    for (int i = 0; i < 4; i++) {
        cin >> ss;
        for (int j = 0; j < ss; j++) {
            if (i == 0)
                ma.push_back(1);
            if (i == 1)
                ma.push_back(2);
            if (i == 2)
                ma.push_back(3);
            if (i == 3)
                ma.push_back(4);
        }
    }
    check();
    sort(ans.begin(), ans.end());
    cout << ans.back() << endl << ans[0];
}//main
cs

해설

연산자를 배열에 저장해 주고 next_permutation을 이용하여 모든 경우의 수를 다 계산하여 주는 방식으로 풀었습니다.

 

아래에는 구글링을 통해 dfs를 이용하여 푼 코드 역시 공유하겠습니다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
 
//int ans_temp;
int N;
int A[12];
int S[5];
vector<int>ans;
 
void dfs(int dep,int ans_temp) {
    if (dep == N) {
        ans.push_back(ans_temp);
        //return;
    }
    for (int i = 1; i <= 4; i++) {
        if (S[i]==0continue;
            if (i == 1) {
                S[i]--;
                dfs(dep + 1,ans_temp+ A[dep+1]);
                S[i]++;
            }
            if (i == 2) {
                S[i]--;
                dfs(dep + 1, ans_temp- A[dep+1]);
                S[i]++;
            }
            if (i == 3) {
                S[i]--;
                dfs(dep + 1, ans_temp*A[dep+1]);
                S[i]++;
                
            }
            if (i == 4) {
                S[i]--;
                dfs(dep + 1, ans_temp/A[dep+1]);
                S[i]++;
            }
    }
}
 
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cin >> N;
    for (int i = 1; i <= N; i++)
        cin >> A[i];
    for (int i = 1; i<= 4; i++
        cin >> S[i];
    //cout << A[1] << A[2];
    dfs(1, A[1]);
    sort(ans.begin(), ans.end());
    cout <<  ans.back() << endl << ans.front() << endl;
}
 
cs

 

 

반응형